Spectroscopy and concentration quenching of the infrared emissions in Tm-doped TeO2-TiO2- Nb2O5 glass

نویسندگان

  • Rolindes Balda
  • Joaquín Fernández
  • Sara García-Revilla
  • Jose M. Fernández
  • Aiko Narazaki
  • Katsuhisa Tanaka
  • Kazuyuki Hirao
  • Naohiro Soga
چکیده

In this work, we report the optical properties of Tm ions in tellurite glasses (TeO2-TiO2-Nb2O5) for different Tm 3+ concentrations ranging between 0.05 and 1 wt%. Judd-Ofelt intensity parameters have been determined to calculate the radiative transition probabilities and radiative lifetimes of excited states. The stimulated emission cross-sections of the infrared emissions at 1487 nm and 1800 nm have been determined from the line shape of the emission spectra and the lifetimes of levels H4 and F4 respectively. The emission spectra obtained under 793 nm excitation reveal the existence of energy transfer via cross-relaxation among Tm ions. As a result, the intensity of the infrared H4→F4 emission at 1487 nm decreases in relation to the one at 1800 nm, as concentration increases. The nonexponential character of the decays from the H4 level with increasing concentration indicates the presence of a dipole-dipole quenching process assisted by energy migration. The self-quenching of the F4→H6 emission at 1800 nm can be attributed to limited diffusion within the active centers. ©2007 Optical Society of America OCIS codes: (140.3380) Laser Materials; (160.5690) Rare earth doped materials; (300.6280) Spectroscopy, fluorescence and luminescence References and links 1. J.Y. Allain, M. Monerie, H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660-1662 (1989). 2. S. Tanabe, X.Feng, T. Hanada, “Improved emission of Tm-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm and Nd, Opt. Lett. 25, 817-819 (2000). 3. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638-640 (2007). 4. J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187-203 (1994). 5. R.A.H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001). 6. S.Q. Man, E.Y.B. Pun, P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373 (1999). 7. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, “Gainflattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244-1246 (1998). 8. S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm/Yb-codoped tellurite fiber for Sband amplification,” Opt. Lett. 30, 1437-1439 (2005). 9. Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046-2051 (1999). 10. S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2and Ga2O3-based oxide glasses containing Er,” J. Non-Cryst. Solids 122, 79-82 (1990). #81812 $15.00 USD Received 3 Apr 2007; revised 11 May 2007; accepted 13 May 2007; published 17 May 2007 (C) 2007 OSA 28 May 2007 / Vol. 15, No. 11 / OPTICS EXPRESS 6750 11. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of telluritebased erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274-276 (1998). 12. A. Mori, “1.58-μm Broad-band erbium-doped tellurite fiber amplifier,” IEEE J. Lightwave Technol. LT-20, 822-827 (2002). 13. R. Balda, J. Fernández, M.A. Arriandiaga, J. Fernández-Navarro, “Spectroscopy and frequency upconversion in Nd doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223-086234 (2007). 14. I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990-992 (2007). 15. S. Kim and T. Yoko, “Nonlinear Optical Properties of TeO2-Based Glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses,” J. Am. Ceram. Soc. 78, 1061-1065 (1995). 16. H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er doped niobic tellurite glass,” J. App. Phys. 93,186-191 (2003). 17. M. E Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. App. Phys. 69, 68766884 (1991). 18. M.A. Villegas and J.M. Fernández Navarro, “Physical and structural properties of glasses in the TeO2-TiO2Nb2O5 system,” J. Eur. Ceram. Soc. 27, 2715-2723 (2007). 19. H. Nasu, T.Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31 38993900 (1992). 20. B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962). 21. G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962). 22. W.T. Carnall, P.R. Fields, K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm, Sm, Eu, Gd, Tb, Dy, and Ho,” J. Chem. Phys. 49, 4412-4423 (1968). 23. M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595-602 (1987). 24. M.J. Weber, “Probabilities for radiative and nonradiative decay of Er in LaF3”, Phys. Rev. 157, 262-272 (1967). 25. A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm singly doped and Tm, Ho doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364-5371 (1990). 26. M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344-4350 (1982). 27. M. Naftaly, S. Shen, and A. Jha, “Tm-doped tellurite glass for a broadband amplifier at 1.47 μm”, Appl. Opt. 39, 4979-4984 (2000). 28. J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563-577 (2003). 29. M.J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation”, Phys. Rev. B 4, 2932-2939 (1971). 30. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance”, J. Phys. Soc. Japan 22, 779-784 (1967). 31. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972). 32. Y.S. Han, J. Heo and Y.B. Shin, “Cross-relaxation mechanism among Tm ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302-308 (2003). 33. A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471-2478 (2004). 34. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb, Er, and Ho doped Y2O3,” Opt. Mater. 24, 103-109 (2003). 35. R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247-1252 (2006). 36. F. Auzel, “A fundamental self-generated quenching center for lanthanide-doped high-purity solids,” J. Lumin. 100, 125-130 (2002).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic properties of the 1.4 μm emission of Tm ions in TeO2-WO3-PbO glasses

In this work, we report the spectroscopic properties of the infrared H4→F4 emission of Tm ions in two different compositions of glasses based on TeO2, WO3, and PbO for three Tm2O3 concentrations (0.1, 0.5, and 1 wt%). Judd-Ofelt intensity parameters have been determined and used to calculate the radiative transition probabilities and radiative lifetimes. The infrared emission at around 1490 nm ...

متن کامل

Luminescence Properties of TeO2-LiF-Gd2O3 Glasses

In this work, the structural properties and spectroscopic behavior 80 mol.%TeO2-20mol.%LiF glasses which were doped with 0. 05, 0. 2 mole% Gd2O3 have been studied. It was shown that,  by increasing the amount of Gd2O3 the glass stability was decreased. The PL emissions at 431nm and 627nm wavelengths were distinguished by 320nm excitation. The FT-IR analysis showed deformed TeO4 groups in these ...

متن کامل

Optical properties of spin-coated Er-doped Ga1As39S60 Chalcogenide thin films

Spin-coating of Chalcogenide glasses is a cost-effective and flexible method to produce thin films applicable in photonics. In this paper Er was doped into Ga1As39S60 glass by melt quenching technique and solutions for spin coating were prepared from glass powders dissolved in Propylamine and Ethylendiamine. Substrates used were microscopic slides (refractive index of about 1.51). Applied layer...

متن کامل

Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses.

Zinc tellurite glasses of compositions 19ZnO-80TeO2-1Ln2O3 with Ln = Eu, Er, Nd and Tm were prepared by melt quenching. The absorption spectra were measured and from the experimental oscillator strengths of the f-->f transitions the Judd-Ofelt parameters ohm(lambda) were obtained. The values of the ohm(lambda) parameters are in the range usually observed for oxide glasses. For Nd3+ and Er3+, lu...

متن کامل

Preparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon

In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007